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Abstract 

Let X be a l-connected CW-complex of finite type and LX its rational homotopy Lie algebra. 
In this work, we show that there is a spectral sequence whose E2 term is the Lie algebra 
Extur,(Q, LX), and which converges to the homotopy Lie algebra of the classifying space 
BauH. Moreover, some terms of this spectral sequence are related to derivations of Lx and to 
the Gottlieb group of X @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 18G15, 55F35, 55P62 

0. Introduction 

In this paper, X will denote a simply connected CW-complex of finite type. Fi- 

brations whose fiber has the homotopy type of X are obtained, up to fiber homotopy 

equivalence, as pull back of the universal fibration X + B auP X -+ B autX [3,4]; 

here autX denotes the monoid of self-homotopy equivalences of X, aut’X the monoid 

of pointed self-homotopy equivalences of X, and B the Dold-Lashof classifying space 

of a monoid. 

Denote by l? aut X the universal covering of B aut X. For the convenience of the 

reader, we recall the construction of models of BautX. For this, we shall use the theory 

of minimal models which is well developed in [ 14,9,2]. 

Denote by (_4Z, d) the Sullivan minimal model of X and by (U_(V), 6) its Quillen 

minimal model. We define from (,4Z, d) and (e( I’), 6) two Lie algebras of derivations. 

First, the differential Lie algebra (DerAZ, D) is defined by [14]: in degree k > 1, we 

take the derivations of AZ decreasing degree by k. In degree one, we only consider 
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the derivations B which decrease degree by one and verify [d, 01 = 0. The differential 

D is defined by D8 = [d, 01 = d0 - (- 1 )I’ ied. 

In the same way, we define a differential Lie algebra D&t.(V) = @+, r>q-(k.(Y)), 

where Derk( ii( Y)) is the vector space of derivations which increase th7: degree by k 

with the restriction that Derr (tL( V)) is the vector space of derivations of degree one 

which commute with the differential 6. 

Define the differential Lie algebra (AL(Y) 33 D&_(V), d) as follows: 

l sI_(V> $ Der[L( V) is isomorphic to s[L( Y) @ DerL( Y) as a graded vector space, 

. If 9,8’EDerk(tq;sn,sy E sk(vj,ce,8q = 6eq-ipt~e’1e’e, [e,sx~ = (-i)bqx), 
ts&v1 = 0, 

l l?(O) = [6, t?],b(sx) = -+6.x + ad x, where ad x is the derivation of U_(Y) defined 

by W x>(y) = [x, VI. 

Theorem [13-l 5]. The d~~rent~a~ Lie algebras (A_.(V) 9 f>erLf V), fi) and (DerAZ, D) 

are models of the universal covering 8 aut X of B aut X. 

In particular cases, there is a mo~hism between the two models above which induces 

an isomorphism in homology: 

Theorem 1. Let (AZ, d) be the M&an rnjnjrna~ model of X and li( W) = L&AZ, d)? 
there is a morphism 

Y : Der(AZ, d) --) (AL(W) g DerlL( W), ri>, 

which induces an isomorphism in homology. 

It is well known that a connected differential graded algebra T(P), admits a T(V) 

free acyclic differential module of the form (T(Y)@(Q@sV),D) [I, lo]. The differential 

is defined by 

where S is the Q-graded vector spaces map (of degree 1) defined by 

S(u@l)= l@.ssc,S(1QS(QesV)=0, 

S(a.x) = (-l)l”ta.S(x), Vu E TV, x E TV ~3 (Q CD sV), 1x1 > 0. 
(ii) 

The next result gives an interpretation of the rational homotopy Lie algebra of classi- 

fying spaces as a differential Ext [II]. 

Theorem 2. Let (K(Y), d) be Q Quieten model of X and cclnsider the ~d~rn~-H~~ton 
acyclic construction P = (TV ~3 (Q g, s V ), D). There is an isomorpkism of d@erential 
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graded uector spaces 

@ : HOrn,~(P, L(V)) -+ (Sk{ V) g Dull(V), B). (iii) 

Remark. If (L, 6) is a Quillen model of X, we deduce from [ 131 that Hz,&, L) 

and IT*(B aut X) @ Q are isomorphic as graded vector spaces. However, the theorem 

above asserts that n*(B aut X) CC Q 2 Ex~Tv(Q, L(V)); therefore, since the differential 

Ext is invariant by quasi-isomorphism, we can compute rc*(B aut X) @ & using any 

differential graded Lie algebra model of X. In particular, if X is a coformal space, 

n*(B aut X) @ e e Ex~H*(M, e,(Q, G(GX) ca Q). 

1. Proof of Theorem 2 

Let f E HomT@, k(V)), define @(f) = (- 1)If Isf( 1)-t& where 9 is the derivation 

of ll( V) of degree I_f 1 + 1 verifying 19(u) - f(su). It is clear that @ is a one-one 

morphism of graded vector spaces. It remains to prove that CD commutes with the 

differentials. On one hand, 

D(yI‘))=D((-l)l~l,+8) (iv) 

= -(-l)tfl& + (-l)lfl&x + [b, 01, where x = f(1). 

On the other hand, 

@(Df) = -(-l)l%(Df)(l) + 6’, (v) 

where 8’ is the derivation of U_(V) defined V(o) = (Df)(su). In order to verify the 

equalty of expressions (iv) and (v), observe first that 

@f)(l) = Sf(1) = 6X. 

Next, 

2. Proof of Theorem 1 

Define a filtration F on the differential Lie algebra Der(ciZ, d) by the Lie differential 

subalgebras 

Fp = (0 E Der(AZ, d) 10(Z) c AzPZ}, 
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This filtration is compatible with the differential, but we have {FP, F4] c Fp+g- [. To 
obtain a filtered Lie algebra in the usual sense, define (s-‘F), = Fp+l, so we have 

[(s-‘F)~, W’J;hJ c@-‘F)~+~. But, by commodity, we shall work with the filtration 
9. This filtration determines a spectral sequence of differential graded Lie algebras 
(E’, dr) such that E* S’ H*(Der(AZ, dz)), where d2 denotes the quadratic part of the 
differential d, and which converges to H*(Der(n Z, d)). 

Consider the differential Lie algebra (ii(W), &+&) obtained by applying the Quillen 
functor L* to the co~utative differential graded algebra (AZ, d) [12]. Recall that 
W 2 s-‘(AZ)“, is endowed with a filtration induced by the word length in AZ : 

w, = @ WP,& w,,, = s-‘((Ap+1z)q+l)“, 
421 

The differentials 61 and B:! are defined by 

(SZ, 6&b) = (-l)‘“‘(sda, s-t@ 
(sal A sa2; 62s -lb) = (-1)1021(saia2, s-lb) (vi) 
a, al, a2 E AZ, b E Hom(AZ, Q) [12,15], 

and verify &(WP,4) c G3SiP Ws,q_-l, &( Wp,p) c(U_~(W)),_~,,._~. First, filter P as fol- 
lows: PO = T(W) c3 Q, PI = T(W) c3 (Q @I @W)I,,) . . -P,, = T(W) FJ (Q fi3 (SW),,,). 

A filtration of the complex HornT(w) (P, M) is given by 

J’, = {f E HomT(w)(P, L(W)) I f(Pn-~ I= 0). (vii) 

This fil~ation determines a spectral sequence (p, dr), such that z2 = .Ex&..~~Y,~~ 
(Q, rt*(GX) @ Q), which converges to E~~~~~~(Q, lL( W)). 

Define a morphism Y : DerAZ + sL(W) g Der[L(W) 2 Homq&P, h(W)), as 

follows: 
V 0 E DerAZ, Y(0) = su + CI, where u E U_(W) and CI E DerO_( W) are defined by 

cx(W)c w 

and 

& @_lz*)) = o(-lPx’w(x)~ .+z*) 
{ 

ifQ$; n+z 
9 

Al E W and (XV, U> = 
e(x) if &.x) E Q, 
o 

otherwise, x, z E AZ. 

It is a straightforward computation to show that Y is a differential Lie algebra morphism 
which is compatible with filtrations. In particular, 

(viii) 

Therefore, by a spectral sequence argument [5], it remains to prove that the morphism 
Y* : E* -+ B2 is an isomorphism. First, observe that I* = H*(sil_( W) g Der L(W), fi) 
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where (IL(W), 3) = L*(nZ, d2) and any cycle of (sk( W) @ Der[L( W), fi) is homologue 

to a cycle in Im Y, therefore Y* is sujective. 

On the other hand, let sx+a be a cycle in Im Y which is a boundary in (sll( W) $J Der 

U_(W), l?). Then, there is an element sy + p E s[L( W) g DerlL( W) such that: -sS’y+ 

ady+[6’, p] =sx+cc. 

As x E WO, then x = -6’(y) = 0 and we can suppose that y E WO. Moreover, 

x( WP) = 63& W,, then CI = Y(0) where 8 is a derivation of /iZ verifying e(Z) c /i+Z. 

By induction on the bidegree of W and using specific properties of the bifiltered model 

[6], we define a derivation y of IL(W) such that y(W) c W, ad y + [6’, y] = CI. 

The derivation y can be decomposed in a sum of two derivations y1 and y2 such 

that YI(W,) C CB45p+1 4, y2(WP) C $q,P+l W,. As the differential 6’ is of bidegree 

(- 1, - 1 ), then [6’, y2] = 0, ad y + [ 8, yl] = c(, so we have the relations 

Therefore, according to (viii), CI = D’(sy + ~1) with sy + y1 E Zm !P, then a is a 

boundary in Im Y. 0 

Corollary 3. There is a spectral sequence E’(X) of graded Lie algebras such that 

E*(X) = E&+@xLu,~&?> n*(m) 8 e)> 

which converges to rc*(i aut X) @ Q. 

We call this sequence the classifying space spectral sequence of X. 

3. Properties of n*(B aut X) 8 Q 

In this section, we describe some properties of classifying spaces using the classifying 

space spectral sequence. 

3.1. The Gottlieb group 

Recall that the Gottlieb group G(X) of X is the image of the map induced in 

homotopy by the evaluation autX + X [8]; or equivalently, the image of the connecting 

map of the long exact sequence of homotopy groups induced by the universal fibration 

X + B auto X + B aut X. In terms of Quillen models, we define an evaluation map 

k : ffom~(w)(C UW) + lL( W) by k(f) = f(l), and consider the induced map in 

homology H*(k) : ExtTp&Q, U W)) + I&O.(W), 6). 
It is clear that E&(X) S Horn~~~( Q, LX) is isomorphic to the center of the Lie 

algebra LX. The result above gives more precision about the relation between the 

classifying space spectral sequence and the Gottlieb group on one hand, and the relation 

between the morphism k and the topological evaluation map on the other hand. 
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Proposition 4. (a) H*(k) = z+SZ(ev) 8 Q, 

(b) Eoqp*(X) = G(&) = Zm H+(k). 

Remark. If X is a coformal space, Es?(X) = E&(X); then the Gottlieb group of Xs 

coincides with the center of z*(QX) @ Q. 

Proof. We have a commutative diagram 

-Ww)(Q, ‘WV) A H*(sll(W) q3 Der[L(W)) 

where h is defined by h([sx + 01) = [( - l)lXIx]. Then, assertion (a) is a direct conse- 

quence of the fact that h is the connecting morphism of the homotopy exact sequence 

of the universal fibration X + B a&X ---f B autX [ 151. From the classifying space 

spectral sequence, we have the relation E,qP,(X) = Im (H*(k)). 
Recall that the Gottlieb group of XO is isomorphic to the kernel of the map induced 

in homology by the adjunction map 

ad : (O_(W),d) 4 Der(L(W),J) [15]. 

To prove the assertion (b), it is sufficient to show that Im H*(k) = Ker(H*(ad)). 
First, we show that Zm H*(k) CKer(H*(ad)). Let [x] E K@(W), 6) such that 

[x] = H*(k)([f]) = [f(l)]. Therefore, ad x = [6, 191, where 0 is the derivation of 

IL(W) defined by B(y) = f(sy), V y E IV, then [x] E Ker H*(ad). 
On the other hand, if [x] E Ker H*(ad), there is a derivation 8 of [L( IV) such that 

adx = [6, 01 and in this case [x] = (H*(k))([f]) where f is defined by f (1) = x and 

f(SY) = &Y). 0 

We deduce from the classifying space spectral sequence that the homology class 

of x E U_(W) represents a Gottlieb element if only if the T(W)-modules morphism 

f : T(W) @ Q --) [L(W) defined by f(1) = x can be extended to a morphism f of 

T( IV)-modules on T(W) @ (Q @ SW) such that Df = 0. This is the analogue of the 

description of Gottlieb elements given in ([7]). 

3.2. Finite CW complexes 

The next proposition describes an important property of the classifying space spectral 

sequence of a finite CW-complex. 

Proposition 5. Let X be a jinite simply connected CW-complex, there is an integer n 
such that E,qP,(X) = 0 for all q greater than n. 
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Proof. Define II = sup{k, Hk(X, Q) # 0 }. Let 0 E FP, p > n such that [d, 01 = 0, 

we shall prove that 9 is a boundary i.e. there is a derivation 8’ such that 8 = [d, (I’]. 

Suppose that 8’ is defined on Z” such that 8 = [d, 0’1 on Z<‘. Let x E Z’, compute 

d(g(x) + (-1)1’lg’(dx)) = de(x) + (-l)“‘dg’(dx) 

= (-l)“‘B(dx) + (-l)“‘dg’(dx) 

= (-l)“‘(e - [d,g])(dx) 

= 0. 

Therefore there is an element y in AZ such that 0(x) + (- 1)1’le’(dx) = dy. Then 

define e’(x) = y, then 6’ and [d, 0’1 agree on Zs’. 0 

Corollary 6. Let X be a finite simply connected CW-complex such that G(Xo) = 0, 

then Ey2 is a nilpotent ideal of ~~*(Ql?aut X) @ Q. - 

Proposition 7. Let X be finite simply connected CW-complex such that G(Xo) # 0. 

If E>m2(X) = 0, then there is a non trivial element in the center of n*(&?BautX) @ Q. - 

Proof. Denote by (AZ, d) the Sullivan minimal model of X. Since the rational LS- 

category of X is finite, the Gottlieb group of Xs is of finite dimensional [7]. Let M E 

G(Xo) &’ E,“(X) be an element of the highest degree, say II, and /I E 7c*(QBautX)@Q. 

As E?*(X) = 0, /3 = PO + j31 where pi E El?(X). Therefore, [a,/?] = [a,/$] + [a,po] = 

[a, Pi7 Since [a, PII E E,“(X), [ a, 1 corresponds to a Gottlieb element of X0 of degree B 1 
greater than n, then [q/Ii] = 0, so a is in the center of z*(SZBautX) @ Q. 0 

3.3. Derivations of n*(QX) 8 Q 

We cannot expect to recover the homotopy groups of B aut X from derivations of 

rc*(szX) @ Q, even if X is a coformal space. Since [Ey, ET] c ET, then Ey is 

endowed with a Lie algebra structure inherited from ET. As we shall see in the next 

result, E: is related, in a certain manner, to derivations of rc*(?2X) @ Q. 

Proposition 8. There is a Lie algebra isomorphism 

Der(z+(QX) 8 Q)/ad L -+ ET,,, 

where ad L is the ideal of Der(z+(S2X) @ Q) generated by inner derivations, 

Remark. If X is a coformal space, then Der(z+(M) 8 Q)/ad L is a sub Lie algebra 

of 7-c*(B aut X) @ Q. 

Proof. Recall that C*(rc*(!2X) @ Q) g (AZ, dz), where Z” = s-‘Hom(q_~(S1X) 8 

Q, Q). Define 4 : Der(z*(m) 8 Q) + Ef,.+ as follows. Let 6’ be a derivation of 
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z+(m) @ Q, define a map 40 : Z + Z by < &&s-‘z), sx >= -(-l)leli”l < 

s-‘z,s&x) >, and extend it as a derivation on AZ. A straigthforward computation 

shows that 4 is compatible with the Lie bracket; moreover, [dz, &] = 0 since 8 is a 

Lie algebra derivation. Therefore, 4s represents an element of Ef,*. 

Let a be a derivation of ,4Z such that a(Z) c n+Z and [&,cI] = 0. Write tl = 

at +. . .+tq . . . where ai C /I’Z. As [dz, MI] = 0, there is a derivation 8 of rc*(nU)@Q 

such that 4~ = GII. This shows that the map 4 is sutjective. 

It remains to show that Ker 4 g ad L, where ad L is the ideal of inner derivations 

of rc&X) @ Q. 
Let 8 be an inner derivation of rc*(!SX) 123 Q, there is an element a in rc*(s2x) @ Q 

such that e(x) = [a, x], Vx. Consider the element z = s-la* E Z and defme a map a 

on Z such that M(Z) = 1 and extend it to a derivation a such that $0 - [dz, c(] = 0 in 

Ef,,, therefore ad L c Ker 4. Inversely if 40 - [dz, a] = 0 in Ef,,, a = a0 + . . . ai + . . . 

with ai c A’Z, then 4~ = [dz, a~]; therefore, the dual of ~0 is an inner derivation 

which coincides with 8. 0 
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