

Journal of Pure and Applied Algebra 120 (1997) 281-289

JOURNAL OF PURE AND APPLIED ALGEBRA

The homotopy Lie algebra of classifying spaces

J.-B. Gatsinzi*

Freie Universität Berlin, Institut für Mathematik II, Arnimallee 3, D-14195 Berlin, Germany

Communicated by J.M. Stasheff; received 27 July 1995

Abstract

Let X be a 1-connected CW-complex of finite type and L_X its rational homotopy Lie algebra. In this work, we show that there is a spectral sequence whose E^2 term is the Lie algebra $Ext_{UL_X}(Q, L_X)$, and which converges to the homotopy Lie algebra of the classifying space *B autX*. Moreover, some terms of this spectral sequence are related to derivations of L_X and to the Gottlieb group of X. © 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: 18G15, 55F35, 55P62

0. Introduction

In this paper, X will denote a simply connected CW-complex of finite type. Fibrations whose fiber has the homotopy type of X are obtained, up to fiber homotopy equivalence, as pull back of the universal fibration $X \to B$ aut[•] $X \to B$ autX [3,4]; here aut X denotes the monoid of self-homotopy equivalences of X, aut[•] X the monoid of pointed self-homotopy equivalences of X, and B the Dold-Lashof classifying space of a monoid.

Denote by \tilde{B} aut X the universal covering of B aut X. For the convenience of the reader, we recall the construction of models of \tilde{B} aut X. For this, we shall use the theory of minimal models which is well developed in [14, 9, 2].

Denote by $(\Lambda Z, d)$ the Sullivan minimal model of X and by $(\mathbb{L}(V), \delta)$ its Quillen minimal model. We define from $(\Lambda Z, d)$ and $(\mathbb{L}(V), \delta)$ two Lie algebras of derivations. First, the differential Lie algebra $(Der\Lambda Z, D)$ is defined by [14]: in degree k > 1, we take the derivations of ΛZ decreasing degree by k. In degree one, we only consider

^{*} E-mail: gatsinzi@math.fu-berlin.de. Partially supported by the Humboldt Foundation.

the derivations θ which decrease degree by one and verify $[d, \theta] = 0$. The differential D is defined by $D\theta = [d, \theta] = d\theta - (-1)^{|\theta|} \theta d$.

In the same way, we define a differential Lie algebra $Der\mathbb{L}(V) = \bigoplus_{k\geq 1} Der_k(\mathbb{L}(V))$, where $Der_k(\mathbb{L}(V))$ is the vector space of derivations which increase the degree by k with the restriction that $Der_1(\mathbb{L}(V))$ is the vector space of derivations of degree one which commute with the differential δ .

Define the differential Lie algebra $(s\mathbb{L}(V) \oplus Der\mathbb{L}(V), \tilde{D})$ as follows:

- $s\mathbb{L}(V) \oplus Der\mathbb{L}(V)$ is isomorphic to $s\mathbb{L}(V) \oplus Der\mathbb{L}(V)$ as a graded vector space,
- If $\theta, \theta' \in Der\mathbb{L}(V)$; $sx, sy \in s\mathbb{L}(V), [\theta, \theta'] = \theta\theta' (-1)^{|\theta||\theta'|}\theta'\theta, [\theta, sx] = (-1)^{|\theta|}s\theta(x), [sx, sy] = 0,$

Theorem [13–15]. The differential Lie algebras $(sL(V) \oplus DerL(V), \tilde{D})$ and $(Der \Lambda Z, D)$ are models of the universal covering \tilde{B} aut X of B aut \tilde{X} .

In particular cases, there is a morphism between the two models above which induces an isomorphism in homology:

Theorem 1. Let $(\Lambda Z, d)$ be the Sullivan minimal model of X and $\mathbb{L}(W) = L_*(\Lambda Z, d)$, there is a morphism

$$\Psi: Der(\Lambda Z, d) \to (s\mathbb{L}(W) \oplus Der\mathbb{L}(W), \tilde{D}),$$

which induces an isomorphism in homology.

It is well known that a connected differential graded algebra T(V), admits a T(V)free acyclic differential module of the form $(T(V)\otimes (Q\oplus sV), D)$ [1, 10]. The differential is defined by

$$Dv = dv \otimes 1, Dsv = v \otimes 1 - S(\delta v \otimes 1),$$
(i)

where S is the Q-graded vector spaces map (of degree 1) defined by

$$S(v \otimes 1) = 1 \otimes sv, S(1 \otimes (Q \oplus sV) = 0,$$

$$S(ax) = (-1)^{|x|} a.S(x), \forall a \in TV, x \in TV \otimes (Q \oplus sV), |x| > 0.$$
(ii)

The next result gives an interpretation of the rational homotopy Lie algebra of classifying spaces as a differential Ext [11].

Theorem 2. Let $(\mathbb{L}(V), \delta)$ be a Quillen model of X and consider the Adams–Hilton acyclic construction $P = (TV \otimes (Q \oplus sV), D)$. There is an isomorphism of differential

graded vector spaces

$$\Phi: Hom_{TV}(P, \mathbb{L}(V)) \to (s\mathbb{L}(V) \oplus Der\mathbb{L}(V), \tilde{D}).$$
(iii)

Remark. If (L, δ) is a Quillen model of X, we deduce from [13] that $H^*_{Lie}(L, L)$ and $\pi_*(B \text{ aut } X) \otimes Q$ are isomorphic as graded vector spaces. However, the theorem above asserts that $\pi_*(B \text{ aut } X) \otimes Q \cong Ext_{TV}(Q, \mathbb{L}(V))$; therefore, since the differential Ext is invariant by quasi-isomorphism, we can compute $\pi_*(B \text{ aut } X) \otimes Q$ using any differential graded Lie algebra model of X. In particular, if X is a coformal space, $\pi_*(B \text{ aut } X) \otimes Q \cong Ext_{H_*(\Omega X, Q)}(Q, \pi_*(\Omega X) \otimes Q)$.

1. Proof of Theorem 2

Let $f \in Hom_{TV}(P, L(V))$, define $\Phi(f) = (-1)^{|f|} sf(1) + \theta$, where θ is the derivation of L(V) of degree |f| + 1 verifying $\theta(v) = f(sv)$. It is clear that Φ is a one-one morphism of graded vector spaces. It remains to prove that Φ commutes with the differentials. On one hand,

$$D(\Phi(f)) = D((-1)^{|f|}sx + \theta)$$
(iv)
= $-(-1)^{|f|}s\delta x + (-1)^{|f|}ad x + [\delta, \theta]$, where $x = f(1)$.

On the other hand,

$$\Phi(Df) = -(-1)^{|f|} s(Df)(1) + \theta', \tag{v}$$

where θ' is the derivation of $\mathbb{L}(V)$ defined $\theta'(v) = (Df)(sv)$. In order to verify the equalty of expressions (iv) and (v), observe first that

$$(Df)(1) = \delta f(1) = \delta x.$$

Next,

$$\begin{aligned} (Df)(sv) &= \delta(f(sv)) - (-1)^{|f|} f(d \, sv) \\ &= \delta\theta(v) - (-1)^{|f|} f(v \otimes 1 - S(dv \otimes 1)) \\ &= \delta\theta(v) - (-1)^{|f|} (-1)^{|f||v|} [v, f(1)] + (-1)^{|f|} f(S(dv \otimes 1)) \\ &= (-1)^{|f|} (ad \, x)(v) + \delta\theta(v) + (-1)^{|f|} \theta\delta(v) \\ &= (-1)^{|f|} (ad \, x)(v) + [\delta, \theta](v). \quad \Box \end{aligned}$$

2. Proof of Theorem 1

Define a filtration \mathcal{F} on the differential Lie algebra Der(AZ, d) by the Lie differential subalgebras

$$F_p = \{ \theta \in Der(AZ, d) | \theta(Z) \subset A^{\geq p}Z \},\$$

This filtration is compatible with the differential, but we have $[F_p, F_q] \subset F_{p+q-1}$. To obtain a filtered Lie algebra in the usual sense, define $(s^{-1}F)_p = F_{p+1}$, so we have $[(s^{-1}F)_p, (s^{-1}F)_q] \subset (s^{-1}F)_{p+q}$. But, by commodity, we shall work with the filtration \mathscr{F} . This filtration determines a spectral sequence of differential graded Lie algebras (E^r, d^r) such that $E^2 \cong H_*(Der(AZ, d_2))$, where d_2 denotes the quadratic part of the differential d, and which converges to $H_*(Der(AZ, d))$.

Consider the differential Lie algebra $(\mathbb{L}(W), \delta_1 + \delta_2)$ obtained by applying the Quillen functor L_* to the commutative differential graded algebra $(\Lambda Z, d)$ [12]. Recall that $W \cong s^{-1}(\Lambda Z)^{\vee}$, is endowed with a filtration induced by the word length in ΛZ :

$$W_p = \bigoplus_{q \ge 1} W_{p,q}, \ W_{p,q} = s^{-1} ((\Lambda^{p+1}Z)^{q+1})^{\vee},$$

The differentials δ_1 and δ_2 are defined by

$$\langle sa, \, \delta_1 s^{-1}b \rangle = (-1)^{|a|} \langle sda, \, s^{-1}b \rangle \langle sa_1 \wedge sa_2; \, \delta_2 s^{-1}b \rangle = (-1)^{|a_2|} \langle sa_1a_2, \, s^{-1}b \rangle a, \, a_1, \, a_2 \in AZ, \, b \in Hom(AZ, \, Q) \quad [12, 15],$$

$$(vi)$$

and verify $\delta_1(W_{p,q}) \subset \bigoplus_{s < p} W_{s,q-1}, \ \delta_2(W_{p,q}) \subset (\mathbb{L}^2(W))_{p-1,q-1}$. First, filter P as follows: $P_0 = T(W) \otimes Q, P_1 = T(W) \otimes (Q \oplus (sW)_{1,*}) \cdots P_n = T(W) \otimes (Q \oplus (sW)_{\leq n,*})$. A filtration of the complex $Hom_{T(W)}(P, M)$ is given by

$$F_n = \{ f \in Hom_{T(W)}(P, L(W)) \mid f(P_{n-1}) = 0 \}.$$
 (vii)

This filtration determines a spectral sequence (\bar{E}^r, \bar{d}^r) , such that $\bar{E}^2 = Ext_{H_*(\Omega X, Q)}$ $(Q, \pi_*(\Omega X) \otimes Q)$, which converges to $Ext_{T(W)}(Q, \mathbb{L}(W))$.

Define a morphism $\Psi : Der \Lambda Z \to s \mathbb{L}(W) \bigoplus_{\sim} Der \mathbb{L}(W) \cong Hom_{T(W)}(P, \mathbb{L}(W))$, as follows:

 $\forall \theta \in Der \Lambda Z, \Psi(\theta) = su + \alpha$, where $u \in \mathbb{L}(W)$ and $\alpha \in Der \mathbb{L}(W)$ are defined by

$$\alpha(W) \subset W$$

and

$$\langle sx, \, \alpha(s^{-1}z^*) \rangle = \begin{cases} -(-1)^{|\theta||x|} \langle s\theta(x), \, s^{-1}z^* \rangle & \text{if } \theta(x) \in A^+Z, \\ 0 & \text{otherwise,} \end{cases}$$

$$u \in W$$
 and $\langle sx, u \rangle = \begin{cases} \theta(x) & \text{if } \theta(x) \in Q, \\ 0 & \text{otherwise, } x, z \in AZ. \end{cases}$

It is a straightforward computation to show that Ψ is a differential Lie algebra morphism which is compatible with filtrations. In particular,

$$Im\Psi = \{sx + \alpha \mid x \in W_0, \alpha(W_p) \subset \bigoplus_{q \le p+1} W_q, adx + [\delta_2, \alpha] = 0\}.$$
 (viii)

Therefore, by a spectral sequence argument [5], it remains to prove that the morphism $\Psi^2: E^2 \to \overline{E}^2$ is an isomorphism. First, observe that $\overline{E}^2 = H_*(\mathfrak{sl}(W) \oplus Der \mathfrak{l}(W), \overline{D})$

where $(\mathbb{L}(W), \bar{\delta}) = L_*(\Lambda Z, d_2)$ and any cycle of $(s\mathbb{L}(W) \oplus Der\mathbb{L}(W), \bar{D})$ is homologue to a cycle in $Im \Psi$, therefore Ψ^2 is surjective.

On the other hand, let $sx + \alpha$ be a cycle in $Im \Psi$ which is a boundary in $(s\mathbb{L}(W) \oplus Der \mathbb{L}(W), \overline{D})$. Then, there is an element $sy + \beta \in s\mathbb{L}(W) \oplus Der\mathbb{L}(W)$ such that: $-s\delta'y + ady + [\delta', \beta] = sx + \alpha$.

As $x \in W_0$, then $x = -\delta'(y) = 0$ and we can suppose that $y \in W_0$. Moreover, $\alpha(W_p) \subset \bigoplus_{q \leq p} W_q$, then $\alpha = \Psi(\theta)$ where θ is a derivation of ΛZ verifying $\theta(Z) \subset \Lambda^+ Z$. By induction on the bidegree of W and using specific properties of the bifiltered model [6], we define a derivation γ of $\mathbb{L}(W)$ such that $\gamma(W) \subset W$, ad $y + [\delta', \gamma] = \alpha$.

The derivation γ can be decomposed in a sum of two derivations γ_1 and γ_2 such that $\gamma_1(W_p) \subset \bigoplus_{q \leq p+1} W_q$, $\gamma_2(W_p) \subset \bigoplus_{q > p+1} W_q$. As the differential δ' is of bidegree (-1, -1), then $[\delta', \gamma_2] = 0$, ad $y + [\delta', \gamma_1] = \alpha$, so we have the relations

 $[\delta'_1, \gamma_1] = \alpha, ad y + [\delta'_2, \gamma_1] = 0.$

Therefore, according to (viii), $\alpha = D'(sy + \gamma_1)$ with $sy + \gamma_1 \in Im \Psi$, then α is a boundary in $Im \Psi$. \Box

Corollary 3. There is a spectral sequence $E^{r}(X)$ of graded Lie algebras such that

 $E^{2}(X) = Ext_{U\pi_{*}(\Omega X)\otimes Q}(Q, \pi_{*}(\Omega X)\otimes Q),$

which converges to $\pi_*(\tilde{B} \text{ aut } X) \otimes Q$.

We call this sequence the classifying space spectral sequence of X.

3. Properties of $\pi_*(B \text{ aut } X) \otimes Q$

In this section, we describe some properties of classifying spaces using the classifying space spectral sequence.

3.1. The Gottlieb group

Recall that the Gottlieb group G(X) of X is the image of the map induced in homotopy by the evaluation $autX \to X$ [8]; or equivalently, the image of the connecting map of the long exact sequence of homotopy groups induced by the universal fibration $X \to B aut^{\bullet} X \to B aut X$. In terms of Quillen models, we define an evaluation map $k : Hom_{T(W)}(P, \mathbb{L}(W)) \to \mathbb{L}(W)$ by k(f) = f(1), and consider the induced map in homology $H_*(k) : Ext_{T(W)}(Q, \mathbb{L}(W)) \to H_*(\mathbb{L}(W), \delta)$.

It is clear that $E_{0,*}^2(X) \cong Hom_{UL_X}(Q, L_X)$ is isomorphic to the center of the Lie algebra L_X . The result above gives more precision about the relation between the classifying space spectral sequence and the Gottlieb group on one hand, and the relation between the morphism k and the topological evaluation map on the other hand.

Proposition 4. (a) $H_*(k) = \pi_* \Omega(ev) \otimes Q$, (b) $E_{0,*}^{\infty}(X) = G(X_0) = Im H_*(k)$.

Remark. If X is a coformal space, $E_{0,*}^{\infty}(X) = E_{0,*}^{2}(X)$; then the Gottlieb group of X_{0} coincides with the center of $\pi_{*}(\Omega X) \otimes Q$.

Proof. We have a commutative diagram

$$Ext_{T(W)}(Q, \mathbb{L}(W)) \xrightarrow{\cong} H_*(s\mathbb{L}(W) \oplus Der\mathbb{L}(W))$$

$$\stackrel{H_*(k)}{\longrightarrow} H_*(\mathbb{L}(W), \delta)$$

where h is defined by $h([sx + \theta]) = [(-1)^{|x|}x]$. Then, assertion (a) is a direct consequence of the fact that h is the connecting morphism of the homotopy exact sequence of the universal fibration $X \to B$ aut[•] $X \to B$ autX [15]. From the classifying space spectral sequence, we have the relation $E_{0,*}^{\infty}(X) = Im(H_*(k))$.

Recall that the Gottlieb group of X_0 is isomorphic to the kernel of the map induced in homology by the adjunction map

 $ad: (\mathbb{L}(W), \delta) \to Der(\mathbb{L}(W), \delta)$ [15].

To prove the assertion (b), it is sufficient to show that $Im H_*(k) = Ker(H_*(ad))$.

First, we show that $Im H_*(k) \subset Ker(H_*(ad))$. Let $[x] \in H_*(\mathbb{L}(W), \delta)$ such that $[x] = H_*(k)([f]) = [f(1)]$. Therefore, $ad x = [\delta, \theta]$, where θ is the derivation of $\mathbb{L}(W)$ defined by $\theta(y) = f(sy), \forall y \in W$, then $[x] \in Ker H_*(ad)$.

On the other hand, if $[x] \in Ker H_*(ad)$, there is a derivation θ of $\mathbb{L}(W)$ such that $adx = [\delta, \theta]$ and in this case $[x] = (H_*(k))([f])$ where f is defined by f(1) = x and $f(sy) = \theta(y)$. \Box

We deduce from the classifying space spectral sequence that the homology class of $x \in \mathbb{L}(W)$ represents a Gottlieb element if only if the T(W)-modules morphism $f: T(W) \otimes Q \to \mathbb{L}(W)$ defined by f(1) = x can be extended to a morphism \overline{f} of T(W)-modules on $T(W) \otimes (Q \oplus sW)$ such that $D\overline{f} = 0$. This is the analogue of the description of Gottlieb elements given in ([7]).

3.2. Finite CW complexes

The next proposition describes an important property of the classifying space spectral sequence of a finite CW-complex.

Proposition 5. Let X be a finite simply connected CW-complex, there is an integer n such that $E_{a,*}^{\infty}(X) = 0$ for all q greater than n.

286

Proof. Define $n = \sup\{k, H^k(X, Q) \neq 0\}$. Let $\theta \in F_p$, p > n such that $[d, \theta] = 0$, we shall prove that θ is a boundary i.e. there is a derivation θ' such that $\theta = [d, \theta']$. Suppose that θ' is defined on $Z^{< r}$ such that $\theta = [d, \theta']$ on $Z^{< r}$. Let $x \in Z^r$, compute

$$d(\theta(x) + (-1)^{|\theta|} \theta'(dx)) = d\theta(x) + (-1)^{|\theta|} d\theta'(dx)$$
$$= (-1)^{|\theta|} \theta(dx) + (-1)^{|\theta|} d\theta'(dx)$$
$$= (-1)^{|\theta|} (\theta - [d, \theta])(dx)$$
$$= 0.$$

Therefore there is an element y in AZ such that $\theta(x) + (-1)^{|\theta|} \theta'(dx) = dy$. Then define $\theta'(x) = y$, then θ and $[d, \theta']$ agree on $Z^{\leq r}$. \Box

Corollary 6. Let X be a finite simply connected CW-complex such that $G(X_0) = 0$, then $E_{>2}^{\infty}$ is a nilpotent ideal of $\pi_*(\Omega \tilde{B} \text{ aut } X) \otimes Q$.

Proposition 7. Let X be finite simply connected CW-complex such that $G(X_0) \neq 0$. If $E_{\geq 2}^{\infty}(X) = 0$, then there is a non trivial element in the center of $\pi_*(\Omega \tilde{B} \text{ aut } X) \otimes Q$.

Proof. Denote by $(\Lambda Z, d)$ the Sullivan minimal model of X. Since the rational LScategory of X is finite, the Gottlieb group of X_0 is of finite dimensional [7]. Let $\alpha \in G(X_0) \cong E_0^{\infty}(X)$ be an element of the highest degree, say n, and $\beta \in \pi_*(\Omega \tilde{B}autX) \otimes Q$. As $E_{\geq 2}^{\infty}(X) = 0$, $\beta = \beta_0 + \beta_1$ where $\beta_i \in E_i^{\infty}(X)$. Therefore, $[\alpha, \beta] = [\alpha, \beta_1] + [\alpha, \beta_0] = [\alpha, \beta_1]$. Since $[\alpha, \beta_1] \in E_0^{\infty}(X)$, $[\alpha, \beta_1]$ corresponds to a Gottlieb element of X_0 of degree greater than n, then $[\alpha, \beta_1] = 0$, so α is in the center of $\pi_*(\Omega \tilde{B}autX) \otimes Q$. \Box

3.3. Derivations of $\pi_*(\Omega X) \otimes Q$

We cannot expect to recover the homotopy groups of *B* aut *X* from derivations of $\pi_*(\Omega X) \otimes Q$, even if *X* is a coformal space. Since $[E_1^{\infty}, E_1^{\infty}] \subset E_1^{\infty}$, then E_1^{∞} is endowed with a Lie algebra structure inherited from E_1^2 . As we shall see in the next result, E_1^2 is related, in a certain manner, to derivations of $\pi_*(\Omega X) \otimes Q$.

Proposition 8. There is a Lie algebra isomorphism

 $Der(\pi_*(\Omega X) \otimes Q)/ad \ L \to E^2_{1,*},$

where ad L is the ideal of $Der(\pi_*(\Omega X) \otimes Q)$ generated by inner derivations.

Remark. If X is a coformal space, then $Der(\pi_*(\Omega X) \otimes Q)/adL$ is a sub Lic algebra of $\pi_*(Baut X) \otimes Q$.

Proof. Recall that $C^*(\pi_*(\Omega X) \otimes Q) \cong (AZ, d_2)$, where $Z^n = s^{-1}Hom(\pi_{n-1}(\Omega X) \otimes Q, Q)$. Define $\phi : Der(\pi_*(\Omega X) \otimes Q) \to E_{1,*}^2$ as follows. Let θ be a derivation of

 $\pi_*(\Omega X) \otimes Q$, define a map $\phi_{\theta} : Z \to Z$ by $\langle \phi_{\theta}(s^{-1}z), sx \rangle = -(-1)^{|\theta||sx|} \langle s^{-1}z, s\theta(x) \rangle$, and extend it as a derivation on AZ. A straightforward computation shows that ϕ is compatible with the Lie bracket; moreover, $[d_2, \phi_{\theta}] = 0$ since θ is a Lie algebra derivation. Therefore, ϕ_{θ} represents an element of $E_{1,x}^2$.

Let α be a derivation of ΛZ such that $\alpha(Z) \subset \Lambda^+ Z$ and $[d_2, \alpha] = 0$. Write $\alpha = \alpha_1 + \cdots + \alpha_i \cdots$ where $\alpha_i(Z) \subset \Lambda^i Z$. As $[d_2, \alpha_1] = 0$, there is a derivation θ of $\pi_*(\Omega X) \otimes Q$ such that $\phi_{\theta} = \alpha_1$. This shows that the map ϕ is surjective.

It remains to show that $Ker \phi \cong ad L$, where ad L is the ideal of inner derivations of $\pi_*(\Omega X) \otimes Q$.

Let θ be an inner derivation of $\pi_*(\Omega X) \otimes Q$, there is an element a in $\pi_*(\Omega X) \otimes Q$ such that $\theta(x) = [a, x]$, $\forall x$. Consider the element $z = s^{-1}a^* \in Z$ and define a map α on Z such that $\alpha(z) = 1$ and extend it to a derivation α such that $\phi_{\theta} - [d_2, \alpha] = 0$ in $E_{1,*}^2$, therefore $ad \ L \subset Ker \phi$. Inversely if $\phi_{\theta} - [d_2, \alpha] = 0$ in $E_{1,*}^2$, $\alpha = \alpha_0 + \cdots + \alpha_i + \cdots$ with $\alpha_i(Z) \subset \Lambda^i Z$, then $\phi_{\theta} = [d_2, \alpha_0]$; therefore, the dual of α_0 is an inner derivation which coincides with θ . \Box

Acknowledgements

This paper is based on a part of my thesis carried out under the supervision of Professor Y. Félix of the Université Catholique de Louvain to whom I express my gratitude for his advises and his help.

References

- J.F. Adams and P.J. Hilton, On the chain algebra of a loop space, Comment. Math. Helvetici 30 (1956) 305-330.
- [2] H.J. Baues and J.M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977) 219-242.
- [3] A. Dold, Halbexacte Homotopiefunctoren, Lecture Notes in Mathematics, Vol. 12 (Springer, Berlin, 1966).
- [4] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979) 187-197.
- [5] S. Eilenberg and J.C. Moore, Limits and spectral sequences, Topology 1 (1962) 1-23.
- [6] Y. Félix, Modèles bifiltrés: une plaque tournante en homotopie rationnelle, Can. J. Math. 23 (1981) 1448-1458.
- [7] Y. Félix and S. Halperin, Rational L.S.-category and its application, Trans. Amer. Math. Soc. 273 (1982) 1–37.
- [8] D.H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969) 729-756.
- [9] S. Halperin, Lectures on Minimal Models, Mémoire Société Mathématique de France, Vols. 9-10 (1983).
- [10] J.M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Lectures Notes in Mathematics, Vol. 422 (Springer, Berlin, 1974).
- [11] J.C. Moore, Algèbre homologique et homologie des espaces classifiants, Séminaire H. Cartan (1959/1960), exposé no 7.

- [12] D. Quillen, Rational homotopy theory, Ann. Math. (2) 90 (1969) 205-295.
- [13] M. Schlessinger and J. Stasheff, Deformations theory and rational homotopy type, Publ. IHES, to appear.
- [14] D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1977) 269-331.
- [15] D. Tanré, Homotopie rationnelle; modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, Vol. 1025 (Springer, Berlin, 1983).